Quant Quiz- Simplification and Quadratic Equation for SBI

Dear Bank Aspirants practice Quant Questions for upcoming SBI and other exams. Today's Topic is Time and Distance, very important for SBI clerk point of view.

Practice Quant Quiz for SBI

Quant Quiz- Simplification and Quadratic Equation for SBI


Directions (01-5): What should come in place of questions mark (?) in the following questions?

1). 19.9 × 16.1 × 17.2 =?
a) 5869.01
b) 3021.861
c) 5510.708
d) 4862.961
e) None of these

2). 14 (1/11) + 16 (3/11) + 14 (4/121) + 15 (3/11) =?
a) 59 (54/121)
b) 39 (23/121)
c) 61 (82/99)
d) 107 (59/121)
e) 59 (81/121)

3). 16.5% of 300 + 70.5% of 1400 – 10% of 480 = ?
a) 1280.75
b) 1084.5
c) 986.25
d) 1175.5
e) None of these

4). 19% of 360 + ? = 45% of 230
a) 29.68
b) 36.5
c) 33.8
d) 38.7
e) 35.1

5). 49 ÷ 0.7 - 4.9 = ?
a) 63.2
b) 65.1
c) 57.8
d) 69.3
e) None of these

Directions (Questions 06-10): In each of the questions, two equations I and II are given. You have to solve both the equations and give answer
a) If a > b
b) If a < b
c) If a ≥ b
d) If a ≤ b
e) If a = b or relationship between ‘a’ and ‘b’ cannot be established.

6). I. a^2 + a – 2 = 0
II. 2b^2 – 15b +25 = 0

7). I. 8a^2 – 22a – 21 = 0
II. b^2 + 14b – 51 = 0

8). I. a^2 + 8a + 16 = 0
II. 3b^2 - 2√(6b) + 2 = 0

9). I. a^2 + 8a + 15 = 0
II. b^2 + 12b + 35 = 0

10). I. a^2 – 9a + 20 = 0
II. b^2 – 12b + 35 = 0


Answers
1).c)
2).e)
3).b)
4).e)
5).b)
6). b)
7). e)
8). b)
9). c)
10). d)

6). I. a2 + a – 2 = 0
Or, a2 + 2a – a – 2 = 0
Or, a(a + 2) – 1(a +2 ) =0
Or, (a – 1) (a + 2) = 0
:. a =1, -2
II. 2b2 – 15b +25 = 0
Or, 2b– 10b – 5b +25 = 0
Or, 2b (b – 5) – 5(b – 5) = 0
 Or, (b – 5) (2b – 5) = 0
:. b = 5, 5/2
Hence, a < b

7). I. 8a2 – 22a – 21 = 0
Or, 8a2 – 28a +6a – 21 = 0
Or, 4a (2a – 7) + 3(2a - 7) = 0
Or, (4a + 3) (2a – 7) = 0
:. a = - 3/2 , 7/2
II. b2 + 14b – 51 = 0
Or, b+ 17b – 3b – 51 = 0
Or, b (b + 17) – 3(b +17) = 0
Or, (b – 3) (b + 17) = 0
Or, b= -17, 3
Hence relation cannot be established between a and b.

8). I. a2 + 8a + 16 = 0
Or, a2 + 4a +4a + 16 = 0
Or, (a + 4)2 = 0
Or, a + 4 = 0
:. a= -4

II. 3b2 – 2 √(6b) + 2 = 0
Or, (√3b)2 - 2√(6b) + (√2)2 = 0
Or, (√3b - √2)= 0
Or, √3b - √2 = 0
:. B= √2/3
Hence b > a

9). I. a2 + 8a +15 = 0
Or, a2 + 5a + 3a +15 = 0
Or, a(a+5) + 3 (a + 5) = 0
Or, (a +3) (a +5) = 0
:. A = -3, -5
II. b2 + 12b + 35 = 0
Or, b2 + 5b + 7b +35 = 0
Or, b(b + 5) + 7( b+5) = 0
Or, (b + 7) (b + 5) = 0
B = -5 , -7
Hence a ≥ b

10). I. a2 – 9a +20 = 0
Or, a2 – 5a – 4a + 20 = 0
Or, a(a - 5) – 4(a – 5) = 0
Or, (a – 4) (a -5) = 0
:. A=4,5
II. b2 – 12b + 35 = 0
Or, b2 – 5b – 7b +35 = 0
Or, b(b – 5) – 7(b – 5) = 0
Or, (b – 7) (b - 5) = 0
B = 5 , 7
Hence a ≤ b


SHARE THIS

Author:

Previous Post
Next Post